Forschungsstelle für Brandschutztechnik

an der Universität Karlsruhe (TH)

D-76187 Karlsruhe, den 12. Juli. 2004 Hertzstraße 16

Telefon (0721) 608-4473 Telefax (0721) 75 54 67

ERHA-TEC fire & safety & training

Jürgen Ernst

Teckstr. 52

71032 Böblingen

Betreff: Emissionen bei Brandübungscontainern

Ihre e-Mail vom 2.7.04

Sehr geehrter Herr Ernst,

unter Bezugnahme auf Ihre e-mail vom 2.7.04 sowie die Gespräche mit dem Linksunterzeichnenden übersenden wir eine überschlägige Vergleichsrechnung der Kohlenmonoxid-Freisetzung beim Brandübungscontainer, Feuerungen sowie PKW. Hierbei verwenden wir CO als Leitsubstanz und stellvertretend für das Konglomerat von Schadstoffen, die bei unvollständiger Verbrennung fossiler Brennstoffe sonst noch entstehen, insbesondere bei Holz-, Stein- und Braunkohlefeuerungen. Wir haben bewusst auch den Bezug zu einem PKW ohne KAT hergestellt, um einen sich auch dem Laien erschließenden Vergleichswert zu ermitteln.

Hierbei nehmen wir Bezug auf unterschiedliche Quellen, die wir ebenfalls angegeben haben. Naturgemäß kann eine derartige Aufstellung nur überschlägliche Werte liefern. So ist z.B. der in der Tabelle angegebene Wert 5% CO bei Versuchen der Forschungsstelle (FFB) für Raumbrände mit Altmöbeln und unter erheblichem Luftmangel auf der sicheren Seite angenommen, v.a. unter Berücksichtigung dessen, dass wir dies auf die gesamte zur Verbrennung vorgesehene Brandlast angerechnet haben. Bei unseren Versuchen pendelt sich nach dem Flashover unter Berücksichtigung einer Raumöffnung von etwa 10% der Grundfläche der CO-Gehalt des Abgases auf rund 1%, also einen erheblich niedrigeren Wert ein. Wie bereits fernmündlich erläutert, könnten exaktere als die von uns angenommenen Daten bei

Messungen am Container selbst während einer regulären Übung festgestellt werden. Wir prüfen derzeit noch, ob wir derartige Messungen unter Berücksichtigung der von Ihnen genannten Übungszeiten auch logistisch durchführen könnten. Derzeit halten wir jedoch unsere Abschätzung für auf der sicheren Seite durchgeführt, so dass eine derartige Messung nur zusätzliche, unsere Einschätzung nach unten korrigierende, Aufschlüsse ergäbe.

Aufgrund der tabellarischen Aufstellung erhält man bei einer mittleren Konzentration über die Versuchsdauer von insgesamt 192 Versuchen pro Jahr bei 5 % CO eine Äquivalenzmenge, die knapp unter 200 EFH entspräche, die mit Steinkohle beheizt werden und der TA-Luft für Altanlagen entsprechen.

Aus einem Bericht des LfU Sachsen-Anhalt ist zu entnehmen (Berichtsreihe 1998, Sonderheft 7/98, bei Recherche im Internet gefunden), dass bei Kachelofenluftheizungen und Durchbrandöfen CO-Werte von zwischen 0,07 % bis 0,32 % beim Einsatz von Braunkohlenbriketts gemessen wurden. Dies erreicht somit eine ähnliche Größenordnung wie die von uns angegebene Steinkohlenfeuerung.

Bezieht man die Emission bei Brandübungscontainern (nur CO – bezogen) auf die Situation von Ottomotoren ohne KAT, so erhält man das Jahresäquivalent von knapp 10 (Alt-) PKW.

Forschungsstelle für Brandschutztechnik an der Universität Karlsruhe(TH) Emissionen bei Brandübungscontainern, 12.7.2004

	Vorgaben bzw. Annahmen zur Brandstoffmenge	Kohlenmonoxid- Konzentration	theoretische Rauchgasmenge pro kg Brennstoff nach [1.]	Theoretische Rauchgasmenge (unter Normalbedingungen: 0°C, 1 bar)		Kohlenmonoxid-Menge (unter Normalbedingungen: 0°C, 1 bar)	
				Pro Versuch	Pro Jahr	Pro Versuch	Pro Jahr
Brandübungscontainer	30 kg Palettenholz pro Versuch	ca. 5 Vol.% (nach FFB)	3,61 m³ / kg (trockenes Holz)	pro Versuch: 108,3 m³	192 Versuche (4 / Tag, 4 Tage / Monat, *12) 20.794 m ³	5,4 m³ (*1,25 kg/m³)= 6,75 kg	1.296 kg
Feuerungsanlage mit Steinkohle	4.000 kg / Jahr für Einfamilienhaus	TA-Luft Altanlagen: 0,25 g/m³	ca. 6,9 m³/kg		27.600 m³		6,9 kg
		TA-Luft Neuanlagen: 0,15 g/m³	ca. 6,9 m³/kg		27.600 m³		4,14 kg
PKW mit Ottomotor, ohne Katalysator	Jahresfahrleistung: 15.000 km, 10 l Benzin/100 km ⇒ 1.500 l Benzin * 750 kg/m³ = 1.125 kg	ca. 1 Vol.% (nach [4.])	10,7 m³/kg		12.038 m³		120,4 m³ (*1,25 kg/m³)= 151 kg

10,1 kg CO entspricht bei einem PKW ohne Katalysator einer Fahrleistung von 1.000 km. Bei einem Versuch im Brandübungscontainer entstehen 6,75 kg CO. Dieses entspricht einer Fahrleistung von ca. 670 km.

Forschungsstelle für Brandschutztechnik an der Universität Karlsruhe(TH) Emissionen bei Brandübungscontainern, 12.7.2004

<u>Literatur</u>

1.	Bussenius, S.:	Wissenschaftliche Grundlagen des Brand- und Explosionsschutzes, Verlag W. Kohlhammer, Stuugart, Berlin, Köln, 1996
2.	Bundesministerium für Umwelt, Naturschutz u. Reaktorsicherheit:	Technische Anleitung zur Reinhaltung der Luft (TA Luft), 2002 (Internetfassung des BMU)
3.	VDI-Gesellschaft für Verfahrenstechnik und Chemieingenieurwesen (GVC)	VDI-Wärmeatlas, VDI-Verlag GmbH, Düsseldorf, 1994
4.	Gerschler, H.:	Fachkunde Kraftfahrzeugtechnik, Verlag Europa Lehrmittel, Haan-Gruiten,1988

Mit freundlichen Grüßen

Dipl.-Ing. Dieter Brein Leiter der Forschungsstelle Dipl.-Ing. Jürgen Kunkelmann Sachbearbeiter